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Abstract 

 The predictability of the Indian monsoon rainfall and circulation in eight coupled ocean-

atmosphere models is reviewed. The retrospective forecasts generated by the Climate Forecast 

System (CFS) of the U.S. National Centers for Environmental Prediction and by seven European 

coupled models from the Development of a European Multimodel Ensemble System for 

Seasonal-to-Interannual Prediction (DEMETER) project are analyzed. The predictability of these 

eight models at daily and seasonal time scales is discussed in terms of forecast errors which 

include the imperfections in both the model and initial condition and predictability errors which 

depend solely on the uncertainties in the initial condition assuming the model to be perfect. The 

doubling time of small errors was estimated to be about 4-14 days in the CFS and about 4-7 days 

in the DEMETER models for the rainfall over India. No model was successful in capturing the 

observed interannual variability of the seasonal mean monsoon rainfall whereas all the models 

were able to better forecast the surface temperature of the equatorial Pacific. Large errors in the 

seasonal anomalies of the rainfall occur in the Bay of Bengal, the Arabian Sea along the west 

coast of the Indian Peninsula and the equatorial Indian Ocean. The relation between the Indian 

monsoon and the decadal oscillations of different ocean basins are also discussed. 
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1. Introduction  

 Because of the tremendous impact of monsoon on various socio-economic aspects of 

India, the prediction of the monsoon rainfall was recognized to be crucial more than a hundred 

years ago. The India Meteorological Department (IMD) has long been issuing seasonal forecasts 

of rainfall using statistical prediction schemes that took firm root with the discovery of 

significant correlation between the seasonal rainfall and various regional and global climate 

phenomena by Walker (1923, 1924). Some of these predictors are based on now well-known 

slowly-varying components of the climate systems such as El Niño-Southern Oscillation (ENSO) 

(Krishnamurthy and Kinter 2003). Many developing El Niño (La Niña) events have coincided 

with below-normal (above-normal) seasonal monsoon rainfall (Sikka 1980; Rasmusson and 

Carpenter 1983). The dynamical basis for long-range prediction of seasonal mean monsoon 

rainfall was established by general circulation model (GCM) experiments which showed that the 

tropical atmospheric variability is largely determined by slowly-varying boundary forcings such 

as sea surface temperature (SST), soil moisture and snow cover (Charney and Shukla 1981).  

 The Charney-Shukla hypothesis was further supported by observational evidence and was 

modified by Krishnamurthy and Shukla (2000, 2007, 2008) who suggested that the interannual 

variability of the seasonal mean monsoon consists of large-scale seasonally persistent component 

and a statistical average of intraseasonal variations. They found two nonlinear oscillations, a 

northeastward propagating mode with an average period of 45 days and a northwestward 

propagating mode with a period of 30 days, which largely explained the active and break phases 



 3 

of the monsoon.  The seasonal mean monsoon, however, was accounted for by two seasonally 

persisting modes that were shown to be related to ENSO and Indian Ocean Dipole (IOD). The 

seasonal mean monsoon is determined by the relative strengths of these persistent ENSO and 

IOD atmospheric modes which can interfere either constructively or destructively. For example, 

the seasonal rainfall in 1997, the strongest El Niño year on record, was normal because of the 

counteracting effect of the atmospheric ENSO and IOD modes. The persistent atmospheric 

modes were shown to have strong lead/lag correlation with the SSTs of the Indian and Pacific 

oceans (Krishnamurthy and Kirtman 2009), indicating the strong predictive potential of the SST. 

 The statistical forecasting method employed by the IMD has met with varying degree of 

success but with no improvement in the forecast skill over a long period (Rajeevan 2001; Gadgil 

et al. 2005). This method has limitations because it does not provide forecasts with spatial 

distribution of the rainfall or on sub-seasonal time scales. There are more fundamental problems 

related to the use of limited amount of data and the choice of the predictors (Lorenz 1962, 

DelSole and Shukla 2002). On the other hand, the dynamical prediction has evolved over the 

years to a stage where coupled GCMs are now employed for routine seasonal climate prediction 

by operational forecasting centers. Earlier studies of dynamical prediction of the Indian monsoon 

relied on atmospheric GCMs using observed SST as boundary forcing (Palmer et al. 1992; 

Sperber and Palmer 1996; Krishnamurthy and Shukla 2001; Sperber et al. 2001; Kang et al. 

2002). Most of these models simulated the monsoon with deficit rainfall over northern India and 

excess rainfall over the Arabian Sea and the Bay of Bengal. The interannual variability of the 

seasonal rainfall in the models showed poor correlation with observations although SST seems to 

have strong influence. Although this two-tier approach has served useful purpose, Wang et al. 

(2005) showed that the observed lagged correlation between SST and rainfall was correctly 
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simulated by a coupled GCM but not by an atmospheric GCM forced with observed SST, 

especially in the subtropical western Pacific where SSTs are primarily forced by the atmosphere. 

These results emphasize the importance of the coupled ocean-atmosphere interaction in the 

monsoon region and the need to use coupled GCMs for better prediction. The prediction skill of 

the monsoon was found to be better with a coupled model compared to that using an atmospheric 

model (Kumar et al. 2005).  

 The objective of this review is to discuss the predictability of coupled GCMs in 

simulating the Indian monsoon. According to Lorenz (1984), the predictability of a system is the 

degree of accuracy with which it is possible to predict the state of the system in the future. It is 

worth emphasizing that predictability always refers to the specific model that is used to make the 

prediction. The relevance of the specific phenomenon, such as monsoon, that is predicted may 

appear through the time scales and the instabilities involved. The models assessed in this study 

are advanced coupled GCMs that are used either for operational forecasts of seasonal climate or 

for developing new approaches to seasonal prediction. The model that is discussed in more detail 

is the Climate Forecast System (CFS) version 1 of the U.S. National Centers for Environmental 

Prediction (NCEP). The CFS has been providing operational seasonal predictions since 2004 

(Saha et al. 2006). The other models, developed at seven European institutions, come from a 

project called the Development of a European Multimodel Ensemble System for Seasonal-to-

Interannual Prediction (DEMETER) (Palmer et al. 2004). Retrospective forecasts generated by 

these models have been analyzed to assess their predictability.  

 The predictability of weather models is usually assessed by analyzing the growth of daily 

errors and finding the growth rate and doubling time of errors. The daily weather forecasts of the 

European Centre for Medium Range Forecasts (ECMWF) were examined by Lorenz (1982) who 
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estimated the doubling time of small errors in the midlatitudes to be about 2-2.5 days. Similar 

estimates were obtained in the subsequent assessments of the ECMWF weather forecasts 

(Simmons and Hollingsworth 2002). The Lorenz method was used in recent studies (Rai and 

Krishnamurthy 2011, Krishnamurthy and Rai 2011) to assess the predictability of the Indian 

monsoon rainfall and circulation in NCEP CFS. The doubling time of errors was estimated to be 

about 4-5 days for forecasts initiated during the peak monsoon period. Since these errors saturate 

in a matter of few days, the analysis of errors in instantaneous states is not suitable for 

predictability on climate time scales (e.g., seasonal forecasts). For the tropics, Shukla (1998) has 

shown that the differences between simulations with the same SST forcing are much less than 

the differences between simulations with different SST forcings, emphasizing the role of slower 

components in climate predictability. In an analysis of the seasonal forecasts of the monsoon, the 

CFS was found to predict the ENSO-related features of the monsoon better than the regional 

features that may not be strongly influenced by SST (Drbohlav and Krishnamurthy 2010). 

    The predictability of the DEMETER coupled models was compared with the 

predictability of observed SST forced atmospheric GCMs of the Asia-Pacific Economic 

Cooperation Climate Network by Kang and Shukla (2006). The atmospheric models produced 

large systematic errors in the monsoon region, and the predictions showed poor correlation skill. 

There was no improvement in the correlation skill with the multimodel composite approach. 

However, the DEMETER coupled models showed better predictability of the seasonal mean 

rainfall over the monsoon region and western Pacific, indicating the importance of ocean-

atmosphere interaction. The multimodel composites of the DEMETER model predictions of the 

summer season rainfall also had better spatial correlation skill. 

 In section 2, the CFS and the DEMETER models are described along with details of the 
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retrospective forecasts generated by these models. The predictability of the daily rainfall and 

circulation is discussed in section 3. Section 4 discusses the seasonal mean monsoon and its 

predictability. A discussion of the potential for the predictability of monsoon on decadal time 

scale is provided in section 5. A summary is given in section 6. 

 

2. Models and retrospective forecasts 

 

a. NCEP Climate Forecast System 

 The NCEP CFS consists of Global Forecast System (GFS) as its atmospheric component 

(Moorthi et al. 2001) while the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean 

Model version 3 (MOM3) is its oceanic component (Pacanowski and Griffies 1998). The GFS 

has T62 horizontal resolution along with 64 sigma vertical layers. The MOM3 has a zonal 

resolution of 1°, meridional resolutions of 1/3° in the extratropics and 1° in the tropics and 40 

layers in the vertical. The atmospheric and oceanic models exchange momentum and heat fluxes 

once a day with no flux correction. The ocean model is prescribed with observed climatology of 

the sea ice extent. The initial conditions for the atmospheric model is obtained from the NCEP-

Department of Energy Atmospheric Model Intercomparison Project (AMIP II) Reanalysis-2 (R2; 

Kanamitsu et al. 2002) while the NCEP Global Ocean Data Assimilation System provides the 

initial conditions for the ocean model. More details of the CFS are given by Saha et al. (2006). 

 The retrospective forecasts were generated at NCEP by integrating the CFS starting each 

month for the period 1981-2005. Each ensemble of nine-month long retrospective forecasts 

consists of 15 members starting from different initial conditions each month. For example, the 

May forecasts start with the atmospheric initial conditions of 9-13 April, 19-23 April and 29 
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April-3 May and ocean initial states specified from pentads centered at 11 April, 21 April and 1 

May. The forecasts of other months of the year are selected in the same way.  For verification of 

precipitation, the Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie and 

Arkin 1996), the R2 precipitation and the gridded daily rainfall data set from the India 

Meteorological Department (IMD; Rajeevan et al. 2006) are used. The circulation data from R2 

reanalysis are used for verifying the horizontal wind fields. 

 

b. DEMETER models 

 The DEMETER project uses seven coupled ocean-atmosphere models from the following 

European institutions: (1) European Centre for Research and Advanced Training in Scientific 

Computation (CERFACS), France, (2) European Centre for Medium-Range Weather Forecasts 

(ECMWF), (3) Istituto Nazionale de Geofisica e Vulcanologia (INGV), Italy, (4) Laboratorie 

d’Océanographie Dynamique et de Climatologie (LODYC), France, (5) Max-Planck Institut für 

Meteorologie (MPI), Germany, (6) Centre National de Recherches Météorologiques (Météo-

France), France and (7) Met Office, United Kingdom. Hereafter, these models will be referred to 

as CERF, ECMW, INGV, LODY, MAXP, METF and UKMO, respectively. The main objective 

of the DEMETER project was to test the concept of multimodel ensemble prediction. The results 

of DEMETER have led to routine multi-model ensemble seasonal predictions at the ECMWF. In 

this study, however, the individual DEMETER models will be compared with each other. 

 The DEMETER produced 6-month long retrospective forecasts with each model from the 

initial conditions of 1 February, 1 May, 1 August and 1 November for the period 1980-2001. 

Each forecast set consists of an ensemble of nine members. Different initial conditions for the 

nine ensemble members are provided by three different ocean analyses and SST perturbations. 
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The atmospheric initial conditions are taken from the ECMWF 40-year reanalysis (ERA-40). 

The retrospective forecasts from 1 May initial conditions are used in this study in order to cover 

the monsoon season. Palmer et al. (2004) have provided the details of the DEMETER models 

and their retrospective forecasts. For verification purpose in the present study, the precipitation 

from the IMD data set and R2 reanalysis and SST from the Hadley Centre have been used. 

 

3. Daily predictability 

 The daily mean monsoon rainfall and circulation simulated by the CFS forecasts is 

discussed in detail by Rai and Krishnamurthy (2011). The daily climatological mean rainfall and 

horizontal fields were found to simulate the seasonal cycle of onset, peak and withdrawal of 

monsoon fairly well. However, the magnitude and the spatial structure of the climatology in the 

CFS were not found to have good correspondence with the observations. The mean seasonal 

cycles of the DEMETER model is discussed by Joseph et al. (2010) who show that the multi-

model ensemble mean is better compared to the individual models. 

 In this section, the predictability of the models in forecasting the daily means of rainfall 

and circulation is discussed in more detail. The predictability of the CFS analyzed by Rai 

Krishnamurthy (2011) and Krishnamurthy and Rai (2011) is reviewed, and new results on the 

predictability of the DEMTER models are presented. The errors in forecasts result from the 

imperfections of the model as well as due to the sensitive dependence on initial conditions in 

nonlinear systems. Therefore, the predictability of the model can be quantified by the following 

two measures. One of them is the forecast error defined as the difference between the prediction 

and observation. The other is the predictability error defined as the difference between two 

predictions made by the same model.  The predictability errors arise solely due to the 
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uncertainties in the initial conditions under the assumption that the model is perfect while the 

forecast errors are caused by imperfections in both the initial conditions and the model (Lorenz 

1982, 1985).  The forecast errors and predictability errors give the lower and upper bounds of the 

predictability of a model, respectively (Lorenz 1982). 

 For a quantitative analysis of the monsoon predictability, it is useful to work with the 

following indices of rainfall and circulation over the monsoon region: (1) the Indian monsoon 

rainfall (IMR) index defined as the rainfall averaged over land points in India, (2) the extended 

Indian monsoon rainfall (EIMR) index defined as the rainfall averaged over (70°E-110°E, 10°N-

30°N) (Goswami et al. 1999), (3) the Asian-Australian monsoon rainfall (AAMR) index defined 

as the rainfall averaged over (40°E-160°E, 40°S-40°N) (Krishnamurthy and Shukla 2001), (4) 

the monsoon Hadley (MH) index defined as the meridional wind shear between 850 hPa and 200 

hPa averaged over (70°E-110°E, 10°N-30°N) (Goswami et al. 1999), and (5) the Westerly Shear 

(WS) index defined as the zonal wind shear between 850 hPa and 200 hPa averaged over (40°E-

80°E, 5°N-20°N) (Wang and Fan 1999). 

 

a. Forecast errors 

 The forecast errors (forecast minus observation) of daily IMR index in individual 

ensemble members for May and July initial conditions in CFS forecasts are shown as root mean 

square (RMS) errors in Fig. 1. The IMD rainfall data are used as observations. The root mean 

square (RMS) errors for each ensemble member are computed by averaging the squared forecast 

errors over the period 1981-2005. The initial size of the errors is in the ranges of 0.6–1.8 mm 

day−1 and 1.8–3.0 mm day−1 for the May and July forecasts, respectively. Although the time 

taken to reach saturation is different for the May and July forecasts, the errors in both cases reach 
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saturation by 1 July.   These differences in the error growth are related to the fact that the May 

and July initial conditions occur during the onset and peak phases of the monsoon. For the EIMR 

index, which includes part of the oceanic region, Rai and Krishnamurthy (2011) have shown that 

the errors grow slightly faster for the May forecasts while the errors in the July forecasts are 

similar compared the error growth of the IMR index. Interestingly, the forecast errors of WS 

index (zonal circulation index) take about 20-30 days to reach saturation for May forecasts while 

it seems to take much longer to reach saturation for July forecasts, as shown by Krishnamurthy 

and Rai (2011).  

 The overall growth of forecast errors is studied by analyzing the RMS errors obtained by 

averaging the squared errors over all the ensemble members and over all the years (1981-2005). 

These RMS errors of the IMR and EIMR indices are shown in Fig. 2 for May and July forecasts. 

The errors in the IMR index shown in Fig.2 are with respect to both the IMD observation and R2 

analysis whereas the errors in the EIMR index are with respect to R2 analysis only.  The initial 

size of the errors is about 1 and 2 mm day−1 for the May and July forecasts, respectively.  In the 

May forecasts, the IMR and EIMR indices take about 60 and 90 days, respectively, to reach 

saturation, thus indicating different growth rates (Figs. 2a, b). The errors with respect to IMD 

observations are higher by about 0.5–1.0 mm day−1 compared to the errors with respect to 

analysis (Fig. 2a). In July forecasts, the errors reach saturation in about 30 days for both the IMR 

and EIMR indices (Figs. 2c, d). The saturation value keeps decreasing steadily toward the end of 

the monsoon season. 

 The forecast errors of WS and MH circulation indices were also examined by 

Krishnamurthy and Rai (2011). Since the magnitudes of the zonal and meridional winds differ 

widely, the RMS forecast errors of WS and MH indices are shown along with the RMS errors of 
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zonal and meridional winds at 850 hPa and 200 hPa separately in Fig. 3 for May and July initial 

conditions. In May forecasts, the errors in the lower level winds grow at a slower rate and reach 

saturation in about 40 days (Figs. 3a, b). However, the errors in the upper level winds and the 

errors in the WS and MH indices grow at a much faster rate at first reaching saturation in about 

20 days. Subsequently, the errors decay for a while up to day 130 and then grow again but at a 

slower rate. The two growing phases happen to occur during the onset and withdrawal phases of 

the monsoon. The errors in the July forecasts also reveal similar behavior but with some 

differences (Figs. 3c, d). The WS index, MH index and the horizontal winds at 200 hPa grow at a 

faster rate and reach saturation in about 20 days. This saturation level lasts for a shorter period of 

time (compared to May forecasts) and then the errors grow at a slower rate starting from day 60 

when the withdrawal phase of the monsoon has started but before the monsoon ends. 

 The RMS forecast errors of the IMR index in all the DEMETER models are shown in 

Fig. 4. The forecast errors are with respect to IMD observed rainfall, and the squared errors are 

averaged over all nine ensemble members and over the period 1980-2001 to obtain the RMS 

errors for each model. It should be recalled that all the DEMETER forecasts analyzed here start 

from 1 May. In general, the error growths in the DEMETER models (Fig. 4) are similar to the 

error growth of the May forecast of the CFS (Fig. 1a). While some models (CERF, MAXP, 

METF and UKMO) reach saturation in about 60 days (by 1 July), other models (ECMW, INGV 

and LODY) reach saturation by 1 June. MAXP has the lowest saturation value. All models, 

except UKMO, show an initial slow growth during the monsoon onset period followed by a 

faster growth rate. 

 

b. Predictability errors 
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 Under the assumption that the model is perfect, the predictability error is the difference 

between two forecasts of the same model starting with different initial conditions. The 

predictability errors in the CFS model were analyzed by Rai and Krishnamurthy (2011) 

following a method used by Lorenz (1982) to determine the predictability of the ECMWF model. 

The Lorenz method is based on the idea that the one-day forecast of a particular day can be 

considered to be that day’s analysis plus a moderately small error. Thus, the subsequent 

difference between two forecasts initiated one day apart gives the evolution of a presumably 

small initial error and will be referred to as 1-day predictability error. Similarly, forecasts starting 

from initial conditions that are two days apart provide 2-day predictability error, and so on. 

 There are 12 such pairs of forecasts that start one day apart in each month’s CFS 

forecasts. The RMS predictability errors are then computed by averaging the squared errors over 

all the 12 pairs and over all the years (1981-2005). The RMS 1-day predictability errors of IMR 

and EIMR indices in the CFS are shown in Fig. 5 for May and July forecasts. The general pattern 

of the growth of predictability errors (Fig. 5) is similar to that of the forecast errors (Fig. 2). The 

predictability errors of the EIMR index have a higher saturation value, presumably due to the 

higher variability of the model forecasts over the Bay of Bengal and the Arabian Sea. The initial 

size of the predictability errors is large in the July forecasts since they start during the peak of the 

monsoon season. The growths of 1-day to 4-day predictability errors of IMR, EIMR and AAMR 

are discussed in more details by Rai and Krishnamurthy (2011). 

 The predictability errors of the circulation indices in the CFS were also examined by 

Krishnamurthy and Rai (2011). The evolution of 1-day predictability errors of WS and MH 

indices are shown in Fig. 6 along with those of the zonal and meridional winds at 850 hPa and 

200 hPa for May and July CFS forecasts. In this case also, the predictability errors (Fig. 6) are 
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similar to the forecast errors (Fig. 3). A noticeable difference is in the May forecasts which show 

less decay after the first saturation (Figs. 6a, b). Also, the slower growths of the upper level zonal 

wind and the WS index (Fig. 6c) start earlier than in the case of the forecast errors (Fig. 3c).  

 Since all the integrations of the DEMETER models start on the same day (1 May) but 

with perturbed initial conditions, it is not necessary to follow the Lorenz method to compute the 

predictability errors in this case. Assuming each ensemble member to be perfect (or assumed to 

be observation), one at a time, the other members are treated as forecasts. In this way, for each 

DEMETER model, there are 36 “observation”-forecast pairs for each year. The RMS 

predictability error of the IMR index is computed from the averages of squared errors over all 36 

members and over all the years and is shown for all the DEMETER models in Fig. 7. In general, 

the growth of the predictability errors (Fig. 7) is similar to that of the forecast errors (Fig. 4). 

However, the saturation values of the predictability errors are generally smaller than those of the 

forecast errors. In the case of MAXP, there is no clear error growth which implies that the 

forecasts of all the ensemble members are close to each other. An examination of the individual 

forecasts has shown that the daily anomalies of rainfall drift rapidly toward very small values in 

the IMR and EIMR regions in all the ensemble members. The MAXP model is known to have a 

large climate drift (Jin et al. 2008). In all the other models, the initial growth of predictability 

errors is smoother and does not reveal two different growth rates as in the case of forecast errors. 

 The saturation values reached by the forecast errors and predictability errors depend on 

the time mean and variance of the observations/analyses and forecasts, respectively. The 

saturation value of forecast errors (predictability errors) is simply the RMS difference between 

randomly selected observations (forecasts) and is about √2 times the standard deviation of the 

observations (forecasts). If the observations/analyses and forecasts have same mean and 
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variance, the forecasts errors and predictability errors will reach the same saturation value. In the 

case of DEMETER models, the saturation values of the forecast errors (Fig. 4) are slightly higher 

than those of the predictability errors (Fig. 7). This may imply that the model imperfections have 

contributed to the increased saturation value in the forecast errors. The seasonal character of the 

monsoon is reflected in the decreasing saturation level as the monsoon season progresses. In the 

case of CFS, the forecast errors of the IMR index using the IMD observation (Figs. 2a,c) seem to 

saturate at slightly higher values than the corresponding values of the predictability errors (Figs. 

5a,c). However, the saturation values of the forecast errors using the analysis (Fig. 2) are actually 

less than those of the predictability errors (Fig. 5). The reasons for this behavior may be due to 

the fact that each ensemble member in the CFS forecasts spans different time periods during the 

monsoon season and that the analysis may have lower variance. 

 

c. Estimate of error growth rate 

 In nonlinear dynamical systems, small initial errors first grow exponentially according to 

linear error dynamics and then slow down during the nonlinear phase of growth before reaching 

the saturation value (Lorenz 1985; Krishnamurthy 1993). The forecast errors and predictability 

errors of the models follow the same error growth pattern. To represent this typical error growth 

in large models, Lorenz (1982) introduced an empirical formula which has been found to be 

useful in estimating the growth rate of small errors. If the magnitude of the error is E, then the 

Lorenz error equation is represented by 
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where λ is the growth rate of the error and s satisfies the condition that Es = λ/s is the saturation 

value of E. λ usually represents the first Lyapunov exponent of the system (Krishnamurthy 

1993). If E0 is the magnitude of the error at an initial time t0, the solution to Eq. 1 is given by 

 

 

The doubling time of small error is given by td = (ln2)/λ. The error growth rate can be estimated 

by fitting the error data to Eq. 2 using a suitable nonlinear least-squares method. 

 To demonstrate that Lorenz’s empirical formula (Eq. 2) is a good approximation, the 1-

day predictability error of the EIMR index in CFS May forecasts (from Fig. 5b) and its best fit of 

Eq. 2 are plotted in Fig. 8.  Using Eq. 2, the nonlinear best fit curve has been extrapolated 

backward in time so that the initial linear growth is also included and the predictability error has 

been shifted forward in time in Fig. 8. The linear part of Eq. 1 is also plotted in Fig. 8 showing 

the exponential growth. The estimated value of λ is 0.08 which translates to a doubling time of 

8.6 days for small errors. Although Eq. 2 is a good approximation, the initial value of the 

predictability error is found to be large enough to fall in the nonlinear regime of error growth. 

 All the predictability errors that were discussed earlier were fitted with the Lorenz’s 

empirical formula to estimate the growth rate of small errors. For the predictability errors in the 

CFS (Fig. 5), the doubling times of the IMR and EIMR index are found to be 13.9 and 8.6 days, 

respectively, for the May forecasts while the corresponding values for the July forecasts are 4.1 

and 6.9 days, respectively. These estimates clearly show the difference between the growth of 

initially small errors during the onset and peak phases of the monsoon. The error growth rates 

were also estimated for the predictability errors of the IMR index for all the DEMETER models 

(Fig. 7) except MAXP which does not show clear error growth. The doubling time of small 
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errors was found to be 4.6, 3.9, 6.9, 5.0, 4.6 and 4.1 days for CERF, ECMW, INGV, LODY, 

METF and UKMO, respectively. These values are comparable to the July CFS forecasts. 

Krishnamurthy and Rai (2011) have shown that two separate empirical formulas with fast and 

slow growth rates have to be fitted for the predictability errors in the circulation indices of CFS 

forecasts (Fig. 6). For example, the doubling time for fast and slow growth in the 200 hPa WS 

domain zonal wind of May forecasts (Fig. 6a) is found to be 4 and 23 days, respectively. 

 

d. Active and break phases 

 Some studies (e.g., Waliser et al. 2003, Fu et al. 2007) have reported that the break 

periods of the monsoon are better predictable than the active periods. Since the CFS forecasts 

start with initial conditions spread throughout the monsoon season, Rai and Krishnamurthy 

(2011) were able to investigate whether predictability depends on the phase of the active/break 

cycle. Using the IMR index of analysis (R2), the active, break and normal periods are identified 

by the same criteria used by Krishnamurthy and Shukla (2007) and Rai and Krishnamurthy 

(2011). The normal periods are further separated by whether the evolution is from normal to 

active (normal-A) or from normal to break (normal-B). The RMS errors of 1-day predictability 

errors starting from initial conditions in these four intraseasonal phases are computed separately 

by using May, June, July and August forecasts. 

 The RMS predictability errors of IMR and EIMR indices of CFS forecasts initiated 

during the four phases of the active/break cycle are shown in Fig. 9. In the case of the IMR 

index, the errors starting from active and break phases show similar growth at a faster rate before 

reaching the saturation level in about 20-30 days (Fig. 9a). The doubling time of small errors for 

these two phases was estimated to be 2.0 days by fitting Lorenz’s formula (Eq. 2). The errors 
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starting from both normal-A and normal-B phases grow slowly with an estimated doubling of 

small errors to be 8.6 days and reach saturation in about 50-60 days (Fig. 9a). The predictability 

errors of the EIMR index starting from all the four phases of the active/break cycle show similar 

growth behavior. In the case of WS circulation index also, there is no distinction in the error 

growth patterns from the four phases (Krishnamurthy and Rai 2011). Thus, the CFS does not 

show any preference in the predictability of either the active phase or the break phase. However, 

the CFS shows that the forecasts with initial conditions in both the active and break phases have 

lower predictability than the forecasts initiated during the transition from normal to active and 

normal to break phases. 

 

4. Seasonal predictability 

 Because of the highly seasonal nature of the monsoon and the dependence of various 

socio-economic sectors on the entire season’s rainfall, prediction of seasonal mean monsoon is 

very important. In this section, the predictability of the CFS in forecasting the seasonal mean 

monsoon discussed by Drbohlav and Krishnamurthy (2010) is reviewed and new results of the 

seasonal predictability of the DEMETER models are presented. Some aspects of the 

climatological mean monsoon rainfall and circulation in the CFS forecasts are also described by 

Drbohlav and Krishnamurthy (2010) and Yang et al. (2008). The June-September (JJAS) 

climatological means of CFS forecasts show excess rainfall in the Arabian Sea and deficient 

rainfall in the Bay of Bengal and over India. Although the climatological mean low-level winds 

are similar to those in the analysis, the forecasts underestimate the magnitude. The analysis of 

the climatological mean seasonal rainfall in the DEMETER models by Joseph et al. (2010) 

shows that only INGV and UKMO models realistically capture the spatial pattern over India. 
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a. Interannual variability 

 The JJAS seasonal anomalies of rainfall and circulation indices in the CFS forecasts are 

compared with observations/analysis in Fig. 10. The indices of the ensemble means are plotted 

for forecast leads of one to five months along with observation/analysis (CMAP and R2). The 

seasonal anomaly of the surface temperature averaged over the Niño-3 region (150°W-90°W, 

5°S-5°N) is also shown. The forecasts are less accurate for the indices representing India and its 

neighborhood (IMR, EIMR and MH; Figs. 10a-c) compared to those representing the Indian and 

Pacific oceans (AAMR and Niño-3; Figs. 10d-e). These relations are confirmed by the values of 

the correlation between forecasts and observations (Drbohlav and Krishnamurthy 2010). By 

examining the composites of strong and weak events based on these various indices, Drbohlav 

and Krishnamurthy (2010) concluded that the CFS captures more accurately the ENSO-related 

features of the monsoon than the regionally influenced features of the monsoon. 

 The DEMETER models also show a similar behavior in the interannual variability of the 

forecasts. In Fig. 11a, the JJAS seasonal anomalies of the EIMR index of ensemble means of the 

DEMETER models are plotted along with the observed seasonal anomaly (CMAP). Similar time 

series of the Niño-3 index of the SST is also shown in Fig. 11b. While most of the DEMETER 

models have been able to forecast the interannual variability of the ENSO variability in SST, no 

model has captured the observed interannual variability of the EIMR index. In fact, the 

correlations between the model forecasts and the observation for EIMR index are less than 0.35 

whereas corresponding correlations for Niño-3 index are in range 0.7−0.8. Another noticeable 

feature of the Niño-3 index forecasts is that four models (CERF, INGV, LODY and METF) 

which use the same ocean model (but slightly different versions) are all grouped together (Fig. 
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11b). The relations seen in these predictions indicate that the coupled ocean-atmosphere 

interactions in the Pacific and Indian Oceans that affect the monsoon need improvement. 

 

 

b. Forecast errors 

 The predictability of the coupled models in forecasting the seasonal mean monsoon 

rainfall is first assessed by examining the forecast errors. The difference in the JJAS seasonal 

anomaly of rainfall over the monsoon region between CFS forecast and observation (CMAP) is 

expressed as RMS error by averaging over all ensemble members and over all the years. These 

RMS forecast errors are plotted in Figs. 12a-c for forecast leads of 1, 3 and 5 months, 

respectively. In the 1-month lead forecast (Fig. 12a), large values (above 3 mm day−1) of the 

forecast error are in the Bay of Bengal, northeast India, the Arabian Sea along the west coast and 

the eastern equatorial Indian Ocean. These are the only regions where the magnitude of the error 

increases (slightly) from 1-month to 5-month lead. In 5-month lead forecast, the errors increase 

in a small region over the western equatorial Indian Ocean. Over most of the land points in India, 

the errors are in the range of 0.8–2.4 mm day−1 and remain unchanged for all leads. A detailed 

description of the errors in the forecasts of each month of the monsoon season is provided by 

Drbohlav and Krishnamurthy (2010). 

 The RMS forecast errors of JJAS seasonal anomalies of rainfall in DEMETER models 

are shown in Fig. 13. The spatial structure of the errors is generally the same for all the models 

but the magnitude varies. The common regions of large errors are in northeast India, Bay of 

Bengal and the equatorial Indian Ocean. Some of these features are similar to the forecast errors 

in CFS (Fig. 12a). The errors are smaller with remarkably similar spatial structure in CERF and 
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METF, perhaps because the two models have the same atmospheric component (ARPEGE) and 

same oceanic component although with different versions (OPA 8.2/8.0).  However, other 

models (INGV and LODY) that use OPA oceanic component but different atmospheric 

components do not show the same error structure. It seems that the coupled models with same 

atmospheric component have similar error structure.  Further examples of this behavior is seen in 

the errors of ECMW and LODY which have IFS as their atmospheric component and in the 

errors of INGV and MAXP which use ECHAM atmospheric model (different versions). The 

errors over the land points in India are larger in ECMW, LODY, and UKMO. 

 

c. Predictability errors 

 The predictability errors of the seasonal mean forecasts under the assumption that the 

model is perfect are now examined. The predictability errors in the CFS are found by using the 

method of Lorenz (1982). Two forecasts initiated one month apart are considered and the 

difference between the JJAS seasonal anomalies of the two forecasts are averaged over all the 

ensemble members and all the years to obtain the RMS predictability error. The RMS errors, 

computed as a function of the lead forecast month, are shown in Figs. 12d-f for 1-, 3-, and 5- 

month lead, respectively. In this case also, large errors (above 3 mm day−1) are in the Bay of 

Bengal, northeast India, the Arabian Sea along the west coast and the eastern equatorial Indian 

Ocean. The errors in these regions increase as the forecast lead increases. A detailed description 

of the predictability errors in the forecasts of each month of the monsoon season is provided by 

Drbohlav and Krishnamurthy (2010). 

 For the DEMETER models, the predictability errors are determined by assuming each 

ensemble member to be perfect, one at a time, while the other members are treated as forecasts. 
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The RMS errors are computed by taking the average over the ensemble pairs and all years. The 

RMS predictability errors in the DEMETER models are shown in Fig. 14. These predictability 

errors resemble the forecast errors (Fig. 13) in their spatial structure in all the models. In this 

case also, the models with the same atmospheric component have errors with similar spatial 

structure and magnitude (CERF and METF; ECMW and LODY). The low values of 

predictability error over India in MAXP should be treated with caution because the rainfall 

anomalies of all the ensemble members drift toward small values. Large errors in the equatorial 

oceanic region are seen in both ECMW and LODY, both of which use the IFS as the atmospheric 

component. The MAXP model, which has shown quite a different behavior compared to all other 

models, has been integrated with atmospheric and oceanic initial conditions and perturbation that 

are different what other models have used. 

 

5. Prospects for decadal predictability 

 Recent years have seen an effort to extend climate prediction from seasonal time scale to 

decadal and multidecadal time scales. Prediction on decadal time scales is relevant for making 

long-term decisions to adapt to climate change and natural low-frequency variability of climate. 

In addition to the external forcing mechanisms, such as the variations in the solar radiation, the 

interactions within and between climate systems such as the atmosphere and ocean are sources of 

interdecadal variability. The existence of climate variability on different decadal time scales 

shown by several ocean-atmosphere coupled models provides hope for predictability at decadal 

time scale (Latif 1998). There are two different facets of decadal predictability. One is assessing 

the prediction of the decadal phenomenon itself (e.g., Boer 2000, Troccoli and Palmer 2007) 

while the other is concerned with the decadal modulation of the seasonal or interannual 
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phenomenon (e.g., Kirtman and Schopf 1998). Although several studies have indicated the 

possible predictability of phenomena related to Atlantic and Pacific oceans, the decadal 

prediction is still in infant stages. Because of lack of studies on decadal predictability of the 

Indian monsoon, a review of the relation of monsoon with known decadal phenomena is 

presented in this section. 

 Several studies have provided evidence for decadal variability of the Indian monsoon 

rainfall and circulation (e.g., Krishnamurthy and Goswami 2000). The IMR index is shown to 

have a low-frequency variability which alternates between above-normal epochs and below-

normal epochs at about three-decade interval. An ENSO-like decadal variability is also known 

exist in the Pacific Ocean (Zhang et al. 1997). The decadal variations of IMR index and Niño-3 

index were shown to vary together most of the time by Krishnamurthy and Goswami (2000). 

They further suggested that the El Niño (La Niña) may have enhanced relation with droughts 

(floods) whereas La Niña (El Niño) may not have a significant relation with the monsoon during 

the warm (cold) phase of the decadal variability. A similar relation was also found by Krishnan 

and Sugi (2003). In the North Pacific Ocean, the dominant mode of variability is the Pacific 

Decadal Oscillation (PDO) which varies with a time scale of about 20-30 years. Several studies 

have established that the North Pacific variability can cause decadal modulation of the variability 

of the tropical Pacific Ocean or ENSO (e.g., Barnett et al. 1999). This relation implies that the 

ENSO-monsoon relation can also be modulated by PDO. The influence of PDO on the monsoon 

variability has not been thoroughly investigated. 

 Another low-frequency oceanic mode of variability that may influence the monsoon is 

the Atlantic Multidecadal Oscillation (AMO) which occurs in the North Atlantic with a time 

scale of about 50-70 years. From model experiments and observations, Zhang and Delworth 
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(2006) indicated that warm (cold) phase of the AMO enhances (reduces) the Indian monsoon 

rainfall. They suggested that the warm AMO phase leads to a northward shift in the Intertropical 

Convergence Zone (ITCZ) which in turn is associated with anomalous southwesterly surface 

winds. Different mechanisms for the relation between AMO and the monsoon rainfall have been 

suggested by other studies (e.g., Goswami et al. 2006). 

 Since the time scales and phases of the AMO, PDO and the ENSO decadal oscillations 

vary, it is necessary to determine the combined influence of these decadal oscillations on the 

Indian monsoon. The prospect for decadal prediction of the Indian monsoon depends on the 

discernable influences of the decadal oscillations of the oceans and any other slowly varying 

component of the climate system on the monsoon. So far, not many model experiments have 

been performed with coupled ocean-atmosphere models to isolate the influences of the decadal 

variability of the Pacific and Atlantic oceans on monsoon. 

 

6. Summary 

 The predictability of eight coupled ocean-atmosphere models in predicting the Indian 

monsoon rainfall and circulation has been reviewed. The retrospective forecasts of CFS, the 

operational coupled model of the NCEP, for the period 1981-2005 were analyzed. The 

retrospective forecasts of seven coupled models from the DEMETER, a project to test the 

concept of multimodel ensemble prediction, were analyzed for the period 1980-2001. The 

predictability of these eight models was studied at daily and seasonal time scales. The 

predictability is expressed in terms of forecast errors which include the imperfections in both the 

model and initial condition and predictability errors which depend solely on the uncertainties in 

the initial condition assuming the model to be perfect. The Lorenz method of analysis and the 
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Lorenz empirical formula were used to estimate the error growth rates. The relation between the 

Indian monsoon and the decadal oscillations of different ocean basins were also discussed. 

 The forecast errors and predictability errors in the daily forecasts of all the models follow 

the classic error growth pattern of nonlinear systems. The daily rainfall in the CFS showed 

differences in the initial size and error growth rate between forecasts with initial conditions in 

May and July, reflecting the different phases (onset and peak) of the monsoon season.  The 

doubling time of small errors was estimated to be in the rage of 4-14 days for the IMR index and 

7-9 days for the EIMR index, depending on the initial month of the forecast. The doubling time 

of small errors of the IMR index in the DEMETER models, all of which start with 1 May initial 

conditions, were estimated to be in the range of 4-7 days. The predictability of the horizontal 

winds in the CFS was found to be somewhat different from that of the rainfall. The error growth 

in the horizontal winds seems to be governed by two time scales, more pronounced in the upper 

level than in the lower level. The analysis of the dependence of predictability on the phase of the 

active/break cycle did not provide a clear picture. Only in the case of IMR index, there was a 

difference in the error growth rate between the forecasts initiated in normal phases and those 

initiated in peak active/break phases. 

 All the models (CFS and DEMETER) failed to capture the observed interannual 

variability of the JJAS seasonal anomalies of the rainfall index over the Indian monsoon region, 

especially during years of developing El Niño and La Niña events. However, all the models were 

able to predict the seasonal anomalies of the Niño-3 index with very high interannual correlation 

with observation. These coupled models are successful in simulating the ocean-atmosphere 

interaction in the Pacific Ocean region but not over the Indian monsoon region. The models still 

require improvement in capturing the seasonally persistent influences of the slowly varying 
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components of the coupled system according to Charney-Shukla hypothesis. The spatial 

structures of forecast errors and predictability errors were found be generally same in all the 

models. The errors are large in the Bay of Bengal, the Arabian Sea along the west coast of the 

Indian peninsula and the equatorial Indian Ocean. The analysis of the DEMETER models 

showed that the models which had the same atmospheric component produced errors with 

similar structure and magnitude. 

 The prospect for predicting the Indian monsoon on decadal time scales was addressed by 

reviewing the known relation between the monsoon and the decadal variability of different 

oceans. The ENSO-like decadal variability of the tropical Pacific Ocean seems to vary together 

with the Indian monsoon rainfall and may influence the severity of the droughts and floods. The 

PDO which influences the ENSO may also affect the variability of the monsoon through ENSO-

monsoon relation. The Atlantic Ocean may also affect the monsoon on decadal time scale with 

the warm (cold) phase of the AMO enhancing (reducing) the Indian monsoon rainfall. 

 The dynamical seasonal prediction of the Indian monsoon rainfall remains a challenge. 

Both the AGCMs and the coupled models show large systematic errors in simulating the mean 

monsoon circulation and rainfall, the statistics of active and break cycles, and the number, 

intensity and tracks of monsoon lows and depressions. The models are unable to produce 

realistic simulation of the interannual variability of the monsoon. Even the AGCMs with 

observed but prescribed SST are unable to simulate the mean monsoon and its interannual 

variability. This has raised questions about the usefulness of AGCMs with prescribed SST in 

simulating and predicting the Indian monsoon circulation and rainfall. 

 Some recent forecast experiments by David Dewitt (personal communication) suggest 

that the dynamical predictions of seasonal mean monsoon circulation and rainfall from coupled 
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models are indistinguishable from seasonal forecasts if the same SSTs were prescribed (Tier 2). 

Similar conclusion has been reached by Edwin Schneider (personal communication) is a separate 

study. These model results, combined with the observational studies of Gadgil et al. (2004) and 

Krishnamurthy and Kirtman (2009) which showed robust relationships between SST anomalies 

over the Pacific and Indian oceans and the Indian summer monsoon rainfall, raise the following 

question which the present study cannot answer: Is the deficiency of AGCMs (with prescribed 

SST) in predicting the seasonal mean monsoon rainfall primarily due to lack of ocean-

atmosphere coupled fluxes or lack of AGCMs ability to simulate the SST-forced response in 

heating and convergence? 
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Fig. 1. CFS Forecast errors:  RMS errors of IMR index of individual ensemble members starting 
from (a) May and (b) July initial conditions. The errors are differences between forecasts and 
IMD observed rainfall. The RMS errors are calculated by averaging the squared errors over the 
years 1981-2005. Units are in mm day−1. 
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Fig. 2. Forecast errors in CFS: RMS errors of IMR index for (a) May and (c) July initial 
conditions and RMS errors of EIMR index for (b) May and (d) July initial conditions. The RMS 
errors are computed by averaging the squared errors over all ensemble members and over the 
years 1981-2005.  Day zero refers to the first forecast day of each of the 15 individual ensemble 
members. Errors with respect to observed IMD rainfall are also shown (green) for comparison 
with errors with respect to analysis (red).  Units are in mm day−1. 
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Fig. 3. Forecast errors in CFS: RMS errors of WS-domain-averaged u850 (green), u200 (red) and 
(u850−u200) (black) for (a) May and (c) July initial conditions. RMS errors of MH-domain-
averaged v850 (green), v200 (red) and (v850−v200) (black) for (b) May and (d) July initial 
conditions. The RMS errors are computed by averaging the squared errors over all ensemble 
members and over the years 1981-2005.  Day zero refers to the first forecast day of each of the 
15 individual ensemble members. Units are in m s−1. 
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Fig. 4. Forecast errors in DEMETER models: RMS errors of IMR index using IMD rainfall data 
as observation. The RMS errors are computed by averaging the squared errors over all ensemble 
members and over the years 1980-2001.  Day zero refers to the first forecast day of each of the 9 
individual ensemble members. The model is identified in the top right corner of each panel. 
Units are in mm day−1. 
 
 
 
 
 
 
 
 

 
 
Fig. 5. Predictability errors in CFS: RMS 1-day predictability errors of IMR index for (a) May 
and (c) July initial conditions and forecast errors of EIMR index for (b) May and (d) July initial 
conditions. The RMS errors are computed by averaging the squared errors over all ensemble 
member pairs in the 1-day predictability errors and over the years 1981-2005 (see text for 
details).  Units are in mm day−1. 
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Fig. 6. Predictability errors in CFS: RMS 1-day predictability errors of WS-domain-averaged 
u850 (green), u200 (red) and (u850−u200) (black) for (a) May and (c) July initial conditions. 
RMS errors of MH-domain-averaged v850 (green), v200 (red) and (v850−v200) (black) for (b) 
May and (d) July initial conditions. The RMS errors are computed by averaging the squared 
errors over all ensemble member pairs in the 1-day predictability errors and over the years 1981-
2005 (see text for details).  Units are in m s−1. 
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Fig. 7. Predictability errors in DEMETER models: RMS predictability errors of IMR index. 
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Units are in mm day−1. The RMS errors are computed by averaging the squared errors over all 
ensemble member pairs in the predictability errors and over the years 1980-2001 (see text for 
details).  The model is identified in the top right corner of each panel. 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 8. RMS error (blue) of EIMR index, empirical fit (green) according to eq. 2 and empirical fit 
(red) according to eq. 4.  The RMS error is 1-day predictability error in CFS (same as that in Fig. 
5b) with May initial condition. The predictability error curve (blue) has been shifted forward in 
time so that the fitted curves (red and green) are extrapolated back to start with a very small 
initial error (~10–3) at day zero. 
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Fig. 9. CFS predictability errors: RMS 1-day predictability errors of (a) IMR index and (b) 
EIMR index shown separately for initial conditions starting from active (red), break (blue), 
normal-A (orange) and normal-B phases (green).  May, June, July and August forecasts are used 
in computing the RMS errors. The RMS errors are computed by averaging the squared errors 
over all ensemble member pairs in the 1-day predictability errors and over the years 1981-2005 
(see text for details).  Units are in mm day−1. 
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Fig.10. CFS forecasts: JJAS seasonal anomalies of (a) IMR, (b) EIMR, (c) MH, (d) AAMR, (e) 
WY, and (f) Niño-3 indices in observation (CMAP)/analysis and forecasts for 1-, 3- and 5-month 
leads. 
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Fig.11. DEMETER model forecasts from 1 May initial conditions: JJAS seasonal anomalies of 
(a) EIMR and (b) Niño-3 indices in ensemble mean of model forecasts and observations (CMAP 
for precipitation and HadISST for SST). 
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Fig.12. CFS forecasts: Forecast error of seasonal precipitation shown as RMSE of JJAS mean 
precipitation anomalies between forecast (1-, 3- and 5-month lead) and observation (left panels). 
Predictability error of the model for n-month lead shown as RMSE of JJAS seasonal 
precipitation anomalies between n-month lead forecast and (n-1)-month lead forecast (right 
panels). The RMS errors are calculated by averaging the squared errors over all ensemble 
members and over the years 1981-2005. Units are in mm day−1. 
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Fig.13. DEMETER model forecasts from 1 May initial conditions: RMS forecast errors of JJAS 
seasonal precipitation anomalies. Units are in mm day−1. The RMS errors are calculated by 
averaging the squared errors over all ensemble members and over the years 1980-2001. The 
model is identified in the top right corner of each panel. 
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Fig.14. DEMETER model forecasts from 1 May initial conditions: RMS predictability errors of 
JJAS seasonal precipitation anomalies. Units are in mm day−1. The RMS errors are calculated by 
averaging the squared errors over all ensemble members and over the years 1980-2001. The 
model is identified in the top right corner of each panel. 
 


